葡京官网 葡京网站 葡京网址
当前位置:主页 > 澳门葡京赌场 >

简单之美 使用libsvm实现文本分类

文章出处:未知 人气:发表时间:2018-09-04
输出量化数据文件 特征向量已经从训练数据集中计算出来,接下来需要对每个词给出一个唯一的编号,从1开始,这个比较容易,输出特征向量文件,为测试验证的数据集所使用,文件格式如下所示:上面,我们只是选择了非默认的核函数,还有其他参数可以选择,比如代价系数c,默认是1,表示在计算线性分类面时,可以容许一个点被分错。这时候,可以使用交叉验证来逐步优化计算,选择最合适的参数。 使用libsvm,指定交叉验证选项的时候,只输出经过交叉验证得到的分类器的精度,而不会输出模型文件,例如使用交叉验证模型运行时的参数示例如下:用-v启用交叉验证模式,参数-v 5表示将每一类下面的数据分成5份,按顺序1对2,2对3,3对4,4对5,5对1分别进行验证,从而得出交叉验证的精度。例如,下面是我们的10个类别的交叉验证运行结果:在选好各个参数以后,就可以使用最优的参数来计算输出模型文件。 使用libsvm验证文本分类器精度 前面已经训练出来分类模型,就是最后输出的模型文件。现在可以使用测试数据集了,通过使用测试数据集来做对基于文本分类模型文件预测分类精度进行验证。同样,需要做尺度变换,例如:

推荐产品


友情链接